skip to main content


Search for: All records

Creators/Authors contains: "Wang, Songjie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Current scientific experiments frequently involve control of specialized instruments (e.g., scanning electron mi- croscopes), image data collection from those instruments, and transfer of the data for processing at simulation centers. This process requires a “human-in-the-loop” to perform those tasks manually, which besides requiring a lot of effort and time, could lead to inconsistencies or errors. Thus, it is essential to have an automated system capable of performing remote instrumentation to intelligently control and collect data from the scientific instruments. In this paper, we propose a Remote Instrumentation Science Environment (RISE) for intelligent im- age analytics that provides the infrastructure to securely capture images, determine process parameters via machine learning, and provide experimental control actions via automation, under the premise of “human-on-the-loop”. The machine learning in RISE aids an iterative discovery process to assist researchers to tune instrument settings to improve the outcomes of experiments. Driven by two scientific use cases of image analytics pipelines, one in material science, and another in biomedical science, we show how RISE automation leverages a cutting-edge integration of cloud computing, on-premise HPC cluster, and a Python programming interface available on a microscope. Using web services, we implement RISE to perform automated image data collection/analysis guided by an intelligent agent to provide real-time feedback control of the microscope using the image analytics outputs. Our evaluation results show the benefits of RISE for researchers to obtain higher image analytics accuracy, save precious time in manually controlling the microscopes, while reducing errors in operating the instruments. 
    more » « less
  2. null (Ed.)
  3. Virtual Reality (VR)-based Learning Environments (VRLEs) are gaining popularity due to the wide availability of cloud and its edge (a.k.a. fog) technologies and high-speed networks. Thus, there is a need to investigate Internet-of-Things (IoT)-based application design concepts within social VRLEs to offer scalable, cost-efficient services that adapt to dynamic cloud/fog system conditions. In this paper, we investigate the costperformance trade-offs for an IoT-based application that integrates large-scale sensor data from Social VRLEs and coordinates the real-time data processing and visualization across cloud/fog platforms. To facilitate dynamic performance adaptation of the IoT-based application with increased user scale, we present a set of cost-aware adaptive control rules. The implementation of the rules is based on an analytical queuing model that determines the performance states of the IoT-based application, given the current workload and the allocated cloud/fog resources. Using the IoTbased application in an exemplar VRLE use case, we evaluate the cost-performance trade-offs with three system architectures i.e., cloud-only, edge-only and edge-cloud architectures. Experiment results illustrate the best/worst practices in the cost-performance trade-offs for a range of simulated IoT scenarios involving monitoring user emotional data collected by using brain sensors. Our results also detail the impact of the system architecture selection, and the benefits in enabling feedback about student emotions to instructors during Social VR learning sessions. Lastly, we show the benefits of integrating our model-based feedback control in maximizing IoT-based application performance while keeping the associated costs at a minimum level. 
    more » « less
  4. Virtual Reality (VR)-based Learning Environments (VRLEs) are gaining popularity due to the wide availability of cloud and its edge (a.k.a. fog) technologies and high-speed networks. Thus, there is a need to investigate Internet-of-Things (IoT)-based application design concepts within social VRLEs to offer scalable, cost-efficient services that adapt to dynamic cloud/fog system conditions. In this paper, we investigate the costperformance trade-offs for an IoT-based application that integrates large-scale sensor data from Social VRLEs and coordinates the real-time data processing and visualization across cloud/fog platforms. To facilitate dynamic performance adaptation of the IoT-based application with increased user scale, we present a set of cost-aware adaptive control rules. The implementation of the rules is based on an analytical queuing model that determines the performance states of the IoT-based application, given the current workload and the allocated cloud/fog resources. Using the IoTbased application in an exemplar VRLE use case, we evaluate the cost-performance trade-offs with three system architectures i.e., cloud-only, edge-only and edge-cloud architectures. Experiment results illustrate the best/worst practices in the cost-performance trade-offs for a range of simulated IoT scenarios involving monitoring user emotional data collected by using brain sensors. Our results also detail the impact of the system architecture selection, and the benefits in enabling feedback about student emotions to instructors during Social VR learning sessions. Lastly, we show the benefits of integrating our model-based feedback control in maximizing IoT-based application performance while keeping the associated costs at a minimum level. 
    more » « less